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Abstract

A new analytic result in acoustics called "Formulation 1B," proposed by Farassat, is used to

compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the

time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with

the loading source term. The formulation contains a far field surface integral that depends on

the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour

integral on the boundary of the airfoil surface. As a first test case, the new formulation is used

to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant

frequency. The unsteady surface pressure for this test case is analytically specified from a result

based on linear airfoil theory. This test case is used to examine the velocity scaling properties

of Formulation 1B and to demonstrate its equivalence to Formulation 1A of Farassat. The new

acoustic formulation, again with an analytic surface pressure, is then used to predict broadband

noise radiated from an airfoil immersed in homogeneous, isotropic turbulence. The results are

compared with experimental data previously reported by Paterson and Amiet. Good agreement

between predictions and measurements is obtained. Finally, an alternative form of Formulation 1B

is described for statistical analysis of broadband noise.
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Nomenclature

A_ = correlation area (m 2)

b = airfoil semi-span (m)

C = airfoil chord (m)

co -- ambient sound speed (m/s)

f -- frequency (Hz)

f = geometry function for airfoil surface (Fig. 1)

E* -- complex combination of Fresnel integrals (Eq. (9g))

9 -- velocity-to-pressure transfer function

E = time independent kernel function (Eq. (24))

k = w/U, convective wave number (m -1)

[¢ = kC/2, reduced frequency

£1 = streamwise integral length scale (m)

Lc = correlation length (m)

_I = V/co, Mack number vector

Mr = _I. _'/r, Mach number in radiation direction

M, = _r. _, Mach number in direction of

AP= unsteady airfoil surface pressure jump (Pa)

P

p'

k

Rww

7

t

U

= unsteady airfoil surface pressure (Pa)

= sound pressure radiated to observer (Pa)

= surface pressure gradient in the direction of surface velocity (Pa/m)

= length variable associated with radiation distance in retarded time (Eqs. (23b) and (23c))

= correlation function of w (Eq. (19g))

= 2-/7, sound radiation vector (m)

= power spectral density of w in k-space (ma/rad-s 2)

= observer time (s)

= uniform freestream speed (m/s)
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u = unsteady streamwise velocity (m/s)

17 = airfoil velocity vector in reference frame fixed to undisturbed medium (m/s)

w = unsteady upwash velocity (m/s)

= Ix1, x2, x3] T, observer position in reference frame fixed to undisturbed medium (Fig. 1),

fixed to airfoil reference frame in Section 5 only

_7 = [yl, y2, 0]T, surface source position in reference frame fixed to undisturbed medium (Fig. 1),

fixed to airfoil reference frame in Section 5 only

9 = vq-m2

A = co�f, acoustic wavelength (m)

= M /9

_b = directivity angle (Fig. 7)

z9 = unit inward facing normal on surface edge (Fig. 1)

0 = angle between airfoil surface normal and radiation direction (Fig. 1)

P0 = ambient density (kg/m 3)

_- = source time (s)

= random phase variable

w = 27rf, circular frequency (tad/s)

Subscripts

1, 2, 3 = chordwise, spanwise, and normal coordinate directions (Fig. 3)

1A = solution calculated by Formulation 1A

1B = solution calculated by Formulation 1B

ret = evaluated at retarded time t - r/co
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1. Introduction

The development of analytical methods to predict noise radiated from an airflow over a rigid

body has been an active research topic within the aeroacoustic community for decades. Research in

this area has, in large part, been motivated by the desire to incorporate the results of aeroacoustic

analysis into an aerodynamic design methodology. The present work is similarly motivated, and

the resulting formulation should lend itself well to an engineering design tool suite.

The current work is specifically focused on the calculation of far field noise that results from

fluctuating pressure on a solid surface. The acoustic analogy [1] provides a framework for developing

methods to predict noise from many types of sources, including noise due to unsteady surface

loading. Such noise is mathematically described by the loading source term, or "dipole term," of

the Ffowcs Williams-Hawkings (FW-H) equation [2]. Because the noise due to an airflow over a

rigid surface is typically dominated by dipole radiation, the acoustic formulations of interest in

this work are determined by solutions of the FW-H equation with the loading source term, i.e.

neglecting the thickness and volumetric terms.

The solution of the FW-H equation can be written in many forms. A new solution, called

"Formulation 1B," is presented herein. Most types of broadband noise, including noise that is

dominated by an airfoil's leading and trailing edges, can be calculated with the proposed Formu-

lation 1B, which is the simplest loading noise prediction formula known to date. This simplicity

makes the new formulation highly suitable for statistical analysis of broadband noise for rotating

surfaces.

In Section 2, Formulation 1B is derived for the specific case of a flat plate undergoing a general

nonuniform motion. For low Mach numbers and distant observers, the dominant term in this

formulation is a far field surface integral that depends on the time derivative and the gradient of

the airfoil surface pressure. The formulation also contains a contour integral on the boundary of the

airfoil surface. This line integral vanishes along the trailing edge if the Kutta condition is imposed.

In Section 3, Formulation 1B is used to calculate the noise radiated from a flat plate moving
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through a sinusoidal gust of constant frequency. The unsteady surface pressure used in this test

case is an analytical result from linearized airfoil theory that is taken from the work of Amiet

[3, 4]. A mesh refinement study is performed to demonstrate the equivalence of Formulation 1B

with Formulation 1A [5], a previously developed acoustic formulation that is also a solution of

the FW-H equation. Results from this analytical test case are also used to examine the velocity

scaling properties of Formulation 1B, which are found to be consistent with the results of Curie [6]

and Ffowcs Williams and Hall [7]. The directivity of the noise induced by a periodic gust is also

examined.

In Section 4, the single-frequency surface pressure in Section 3 is extended by spectral rep-

resentation to serve as an analytic broadband source model for incident turbulence noise. This

stochastically modeled surface pressure is used in Formulation 1B to predict broadband noise

caused by the interaction of a NACA 0012 airfoil and homogeneous turbulence. The resulting

calculations are compared with experimental data previously reported by Paterson and Amiet [8].

In Section 5, an alternative acoustic formulation is described for statistical analysis of broadband

noise.

2. Acoustic Formulation

Consider a fiat, finite surface moving in the plane x3 = 0 along a velocity vector l_. The velocity

vector t_ and the surface geometry are related to the coordinate axes as pictured in Fig. 1. Let

S(xl, x2, t) denote a geometric function where ] = 0 on the surface edge and ] > 0 on the interior

N

of the surface. Let _ = _f denote the unit normal which lies in the plane of the surface, is normal

to the edge, and is directed inward (Fig. 1). Note that V need not be constant in space or time.

The only stipulation on the velocity is that the motion of the surface is in the same plane as the

surface.

Let _ = Ix1, x2, x3] T denote the position of an observer, and _ = [yl, Y2, 0] T denote the position

of a source point on the plate's surface (Fig. 1). The spatial frame of reference is fixed to the

undisturbed medium. The unsteady surface pressure p(_, _-) gives rise to sound that initiates at
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source time r and radiates to the observer along _' = _- ?7. This sound is described by p'(_, t),

the perturbation pressure that arrives at the point (xl,x2,xa) at time t. For some of the subtle

mathematical details that are involved in the following derivation, see [9].

From the FW-H equation, the loading noise is given by a solution of

1 02p '
V2p'---V • [p_H(])5(x3)] (la)

c_ Ot 2

where co is the ambient sound speed and _ is the unit surface normal that, for the present case, is

equivalent to _3, the unit vector in the direction of the x3-axis. The function H(]) is the Heaviside

step function and 5(xa) is the Dirac delta function. Evaluating the divergence in Eq. (la) yields

1 02p ' V2p ' = -p(xl, x2, t) H(]) 5'(x3) (lb)
c_ Ot 2

where 51(x3) denotes differentiation with respect to x3.

Eq. (lb) is the wave equation with an inhomogeneous source term, and its formal solution in

an unbounded domain requires the Green's function 5(g)/4_r, where g = "c - t + r/co, and t and

_- are the observer and source times, respectively. The solution of Eq. (lb) can then be written in

the form

4 7vp'(Z, t) ----- P(Yl, Y2, 7) H(]) 5'(Y3) d_Td7
oo 3

Let 7 --+ g and integrate with respect to g. The result can be written

4_p'(e, t) = - f_3r! [p]rot H(-_)5'(Y31 d_

where the subscript "ret" denotes evaluation at retarded time t - r/co, and F is

(2a)

/_(Yl,Y2; X,t)----/(yl,Y2,t- P/C0)----[/]ret (2b)

Integration with respect to Y3 on the right-hand side of Eq. (2a) yields

f_ 0 {[P]ret g(/_ ) _ dyldy20
(3a)
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Performing the differentiation in the integrand of Eq. (3a) yields

Oy30 { [P]ret_H(/_ ) } __1 ^ 1=c0r[r3/5]r0tH(P)+ [ ] ()r  3ProtHP +--
1

cO r
5(_F) (3b)

ret

where t5 is the time derivative of pressure evaluated by an observer that is fixed with respect to

the medium at rest, and _3 is the third component of the unit radiation vector ÷ = _'/r. Clearly,

then, _3 = _3 • _ = cos 0, where 0 is the angle subtended by the surface normal and the radiation

vector, as shown in Fig. 1. The first and second terms on the right-hand side of Eq. (3b) are of the

similar form Q H(F). In [10], it is shown that the integration of these two terms in Eq. (3a) can

be written

Q H ( T') dyl dy2 = ; Q dE = ; Q2 >0 >0 [ 1 -- Mr ]ret dS (4a)

where dE is the surface area element of the acoustic planform of -F > 0. Also, Mr = 2i4 • _ is the

Maeh number in the radiation direction, where 2_r = _-/co is the local Mach number vector of the

surface.

The integrated value of the third term on the right-hand side of Eq. (3b) is determined as

follows. This integral is of the form

Z = £2 q(Yl, Y2) (_(ff) dyl dy2 (4b)

The differential surface element dyldy2 can be written [10]

dyl dy2 = d£ dN" -
dE d_F

(4c)

where dE and dN" are differential elements of arclength that are, respectively, parallel and normal

to the the surface edge defined by/_ = 0 as shown in Fig. 2. The notation V2 denotes the surface

gradient in the Yl y2-plane. Moreover, it can be shown [10] that

d£, dg

IV2FI [1 - Mr ]ret
(4d)

where dg is an element of arclength along the surface edge defined by f = 0. Eq. (4b) can then be
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written

fx d£dF /y q(Yl,YJ d£ = ff q(Yl,Y2)Z = 2q(Yl'Y2) 5(P) IV2Pl - 0 I V_Pl 0 [1-Mr]retde (4e)

Note that the surface time derivative 0]/07- in Eq. (35), and contained in q(Yl, Y2) in Eq. (4e),

is referenced to the undisturbed medium. However, 0]/07 can be related to the local normal

in-plane velocity of the edge contour as

D] / o Of 0]Dr = 0_ +I?'V]=_+I?'_=0 (5a)

where the subscript "f= 0" denotes evaluation on the edge contour. This relation yields 0]/07 =

-P. f,.

All three terms on the right-hand side of Eq. (3b) are now integrated in Eq. (3a) over the

physical surface ](xl, x2, t) >_ 0 by using Eqs. (4a) and (4e). Note that in Eq. (la),/5 is referenced

to the medium at rest, e.g., as measured by a transducer that remains stationary as the surface

passes by it. The quantity/5 can also be related to Op/Or, the time derivative of pressure in the

reference frame of the moving surface, e.g., as measured by a transducer attached to the surface.

This relation is

0/9 V ap (5b)

where Op/Os is the gradient ofp in the direction of 17, V is the local magnitude of V, and s is in the

direction of the velocity 17 of the surface in the reference frame fixed to the undisturbed medium.

Incorporating all of the above results into Eqs. (3a) and (3b), the solution of Eq. (la) can be

written

47rp'(£, t) -- ff>0 [( Op/Or-Vcor ( 10p/Os)cosO]_Mr ) retdS (6)

] r  pco o]+ pcosO dS- L;(5- de,>0 r2(I-M r) ret 0 ret

where M, = 3_r.D, the Mach number in the direction of f,. Eq. (6) will be referred to as Formulation

lB.
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Thefirst andthird integralsinEq.(6)arefarfieldterms,andthesecondintegralis thenearfield

term.Therelativecontributionsof thetermsin Eq. (6)arenowconsidered,undertheconditions

of low Mach number and an observer in the acoustic far field, i.e.,

M << 1, r >> A (7)

where A is a typical acoustic wavelength of interest. With respect to M and r, the surface far

field integral, i.e., the first integral in Eq. (6), is proportional to 1/r, whereas the second and third

integrals are proportional to 1/r 2 and M/r, respectively. Therefore, the far field surface integral

dominates the signal under the conditions in Eq. (7).

Again, Eq. (6) is valid for the case of nonuniform surface motion. Therefore, Eq. (6) can be

used, as is, to predict loading noise from rotating surfaces. Its predecessor, Formulation 1A [5],

is significantly more complicated in its rotational form and cannot be approximated by only one

surface integral in the far field. Such a significant simplification for far field calculations makes

Formulation 1B more suitable for statistical analysis of broadband sources for rotating surfaces. A

statistical formulation based on Eq. (6) will be addressed in Section 5. However, the focus of the

current work is the application of Formulation 1B in the form of Eq. (6), as will be demonstrated

in the following two sections.

3. Sinusoidal Gust of Constant Frequency

Any noise prediction made with Eq. (6) will be only as good as the input surface pressure

p(g,T). Such time-dependent pressure data could be taken from experimental measurements or

a computational fluid dynamics (CFD) calculation. However, in this initial work, an analytic

expression is used for p(g, 7) to serve as input data for the new acoustic formulation. To this end,

an analytic formulation from thin airfoil theory is used to describe the unsteady surface pressure that

results from a sinusoidal gust of constant frequency. This particular surface pressure formulation is

chosen as an example to establish the equivalence of Formulation 1B and Formulation 1A [5] and to

examine the velocity scaling properties of Formulation lB. In addition, the frequency dependence
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of thefar fielddirectivityisdiscussed.

3.1 Surface Pressure from Thin Airfoil Theory

Consider a rectangular flat plate, in rectilinear motion, as in Fig. 3. The velocity vector 17 =

I-U, 0, 0] T, where U is a constant subsonic speed. For the following examples, the plate's surface

and its boundary, f > 0, are defined by the rectangle {0 < Xl _< C} x {-b _< x2 _< b} in the

plane x3 = 0. This surface is assumed to have an unsteady pressure distribution that is analytically

prescribed from thin airfoil theory, as discussed below.

Amiet [3, 4] presents closed form expressions for the unsteady pressure on the surface of a

thin airfoil of infinite span. The airfoil is assumed to move rectilinearly through a sinusoidal

gust. Analytical methods are used to solve the two-dimensional, time-dependent linear potential

equation by representing the solution as a product of spatial and temporal solutions. The solution

is represented as a truncated series in which higher order terms are neglected.

A complex-valued representation for the airfoil surface pressure is assumed to arise from a

stationary gust in one spatial dimension. This gust can be written in the stationary variable

Xl -- Ut as

w(xl - Ut) = woe -ik(xl-Ut) (8)

where k = w/U is the streamwise convective wave number, and wo is the gust amplitude. This

gust and the airfoil surface pressure that it generates are, for now, considered functions of a single

amplitude and frequency.

The unsteady pressure that arises at a point (Yl, Y2, 0) on the airfoil surface as a result of the

gust in Eq. (8) can be written

AP(yl, t) = 2poUwo g(Yl, _) e ikut (9a)

where P0 is the ambient density, k = kC/2 is the reduced frequency (based on the semi-chord), and

g(Yl, [_) is a transfer function whose form is dependent on the frequency of interest. The factor of

two in Eq. (9a) indicates that the pressure is assumed to be antisymmetric between the upper and
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lower surfaces, and this expression thereby accounts for the pressure on both sides of the airfoil,

i.e., the pressure jump. In [8], the suggested parameter to delineate between the low and high

frequency regimes is # = Mk/fi 2, where/3 = v/1 - M 2, with a demarcation value of # = 0.4.

For low frequencies, # < 0.4, the transfer function is

g(Yl,_) = _ -- 1
Gs(k*)e i_*q(vl'M) , # < 0.4 (9b)

where k* = _//32, Gx is the classical Sears function [11], which, for the present work, is approxi-

mated by
1

[1Gs(k*) _ 1 + 2.4k* + 27rk* (9c)

as suggested in [8], and

q(Yl, M) = M2(2yl/C-1) + (1-/3)]nM -4-/3 In(l-4-/3) - ln2 (9d)

For high frequencies, # _> 0.4, the transfer function is the sum of a leading edge solution and a

trailing edge correction [4], i.e.,

g(Yl, _) = ( gl + g2 ) e -i [2#(1-M)yl/C--Tc/41, # _> 0.4 (9e)

where

gl(Yl,_) z

g2(Yl,_) =

[2Trkyl(1 + M)/C]½

-1 + (1+i) E*[4,(1 - vl/C)]

[ 27rk(1+M)]_

(9f)

and

fo _ e-iU du -- C(_)-i8(_) (9g)
=

The quantities C(_) and 8(_) are the Fresnel cosine and sine integrals and will be numerically

evaluated by the formulas in [12]. The final representation for the unsteady surface pressure P(Yl, "r),
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assumedto bea realquantity,is

P(Yl, T) : _}_{--/kP(yl, T)} (9h)

The pressure jump is negative in Eq. (9h) because the acoustic formulation was derived from

Eq. (la), in which the unit surface normal ea is assumed to point into the fluid, i.e., in the positive

xa direction on the upper surface, and in the negative x3 direction on the lower surface. Therefore,

using the same positive surface normal on both sides of the airfoil, the sum of the pressure on both

sides is AP = Puppet - P'ower, and this expression is the negative of the conventional notion of a

pressure jump.

Some differences are noted here between Eqs. (9e) and (9f) and their counterparts in [3] and

[8]. Such differences include the choice of the coordinate-axes origin and the spatial normaliza-

tion employed by the authors. Another difference arises from the use of complex conjugates in

the present paper, which serves to make the present notation more consistent with the eventual

broadband formulation in [8], which is employed by the present authors in Section 4. The above

surface pressure was originally proposed in order to derive an expression for unsteady lift that was

ultimately incorporated into a frequency domain acoustic formulation [3, 8, 13]. However, in the

present work, the unsteady pressure jump itself will be used as input to Eq. (6) for a time domain

prediction. Finally, note that for both transfer functions, the pressure jump vanishes at the trailing

edge x = C; i.e., the Kutta condition is satisfied. The correctness of this trailing edge boundary

condition has been a subject of debate for many years, for example as reviewed by Howe in [14].

However, as the response of the airfoil leading edge is expected to dominate the noise that arises

from an incident gust, determining the most appropriate treatment at the trailing edge is not an

issue for the current problem.

3.2 Grid Refinement Study

The surface pressure in Eqs. (9a) (9h) is now used to numerically demonstrate the equivalence

of Formulation 1B and and the loading noise terms of Formulation 1A [5]. Formulation 1A forms
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thebasisofWOPWOP,a rotornoisepredictioncodedevelopedat NASALangley Research Center

[15]. To predict loading noise from an airfoil in uniform rectilinear motion, Formulation 1A is

simplified to

4 p'(i,t) = [ ]>0 [c0r(1-Mr)2J dS (10)
ret

The entire formulation here is integrated on the surface interior. At first glance, the form of Eq.

(10) appears no more complex than Eq. (6), but only because of the simplicity of uniform, rectilinear

motion. Unlike Eq. (6), Eq. (10) is not applicable to a rotating surface. The loading noise terms of

the full Formulation 1A are indeed applicable to rotational flow, but the full formulation is more

complex than Eq. (10) (see [15]).

The far field noise radiated from a thin airfoil in a one-dimensional, single-frequency sinusoidal

gust is now calculated with Eq.s (6) and (10). Let ptlB and P'_A denote the sound calculated by

Eqs. (6) and (10), respectively. If the input surface pressure p(y, T) is exactly specified at every

point on the airfoil surface, then the only error in the numerical solution of Eqs. (6) and (10) arises

from the quadrature formula that is chosen to perform the surface and contour integrations. In this

case, the midpoint rule is the quadrature of choice. Therefore, the equivalence of Eqs. (6) and (10)

is demonstrated if the difference IP'IB - p'_A I diminishes in mesh refinement like the cumulative

error expected from the midpoint rule, i.e. that the error is proportional to the square of the mesh

spacing.

The plate's rectangular dimensions are determined by a chord length of C = 0.5 m and a span

of 2b = 2.0 m. The plate is moving at a Mach number of 0.2, and the sound speed is taken to

be 343 m/s. The ambient density is P0 = 1.23 kg/m 3, and the upwash amplitude is w0 = 0.05 U.

The observer position for this test case is _ = [-1, 0, 1]T, in meters. Fig. 3 roughly depicts the

direction of this observer position, although the distance is not to scale.

The calculation is performed for one time period of the surface pressure fluctuation at frequen-
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ciesof f = 25 Hz and f = 1 kHz, with 32 time steps in each period. These choices of frequency, at

the prescribed observer location, will test both the near field and far field equivalence of the two

formulations. Note that the transfer functions in Eqs. (9b) and (9f) are singular at Yl = 0, and

the spatial derivative of Eq. (9f) is singular at Yl = C. Although both singularities are integrable

in an analytic sense, they would cause the quadrature error to deviate from that of the midpoint

rule which, by its definition, requires sufficient smoothness throughout the interval of integration.

Therefore, the domain of streamwise integration is restricted to an interval of the form

eC_<yl _< (1-e) C (11)

where e is a small, positive parameter.

Each calculation is performed on a sequence of six surface grids: {10 x 40}, {20 x 80}, {40 x

160}, {80 x 320}, {160 x 640}, and {320 x 1280}. Because the surface pressure is cast in only one

spatial variable Yl, and the observer location is symmetric relative to the airfoil span, the acoustic

prediction is relatively insensitive to the discretization in Y2. These discretizations are employed

as a more general example of the types of resolution that would be required for a case in which

spanwise pressure variation would significantly affect the far field acoustics.

The grid is clustered via Roberts' transformation [16] near the leading and trailing edges of the

plate in order to accommodate the parameter e = 0.02 on the coarser meshes. The 20 x 80 grid

is shown in Fig. 4. The maximum values of Ip_lB - PqA I during each time period are shown as a

function of the number of grid points on a log-log plot in Fig. 5. The abscissa Nc is the number of

surface elements in the chordwise direction. The dashed line represents a fictitious quantity whose

values are specifically calculated to be directly proportional to N_ 2. The slopes of both calculations

are visibly parallel to a slope of 2, thereby demonstrating that

IP'IB -P'IAI = O(Nc 2) = O(AYl 2)

which is the cumulative error expected from the midpoint rule of integration.
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3.3 Velocity Scaling Laws

Attention is now turned to the way in which the intensity of the far field noise, as determined by

Eq. (6), will scale as a function of velocity when the surface pressure is described by Eqs. (9a) (95).

The conditions of a far field observer in a low Mach number flow (Eq. (7)) will be assumed. The

Mach number range of interest is 0.01 _ M _ 0.2. Velocity scaling laws will be determined for

both compact and noncompact sources.

First, the source is assumed to be compact, i.e., C << ),. This condition will be achieved by

requiring the frequency to be proportional to velocity, f ,-_ U/C, for a sufficiently low range of

frequency. This assumption is consistent with the compact source argument put forth by Curle [6].

If a frequency range of 4Hz _ f _ 80Hz is chosen for the Mach number range 0.01 _ M _ 0.2,

then the acoustic wavelength ), ranges from 85.75 m at M -- 0.01 to 4.29 m at M -- 0.2, for

an ambient sound speed of 343 m/s. If the plate's physical dimensions are as in the above mesh

refinement problem (C = 0.5 m), then the ratio A/C ranges from 8.58 at f -- 80 Hz to 171.5 at f =

4 Hz. These ratios are assumed sufficient for an acoustic source to be considered compact. Note

that # < 0.4 throughout these ranges of Mach number and frequency.

The calculation is performed on a 100 × 400 surface grid, with the streamwise integration interval

restricted as in Eq. (11), with sufficient grid clustering near the leading and trailing edges to allow

for c -- 0.003. The observer position is chosen at a distance of 100 m, directly above the plate's

center, i.e., _ = [0.25, 0,100] T in meters. This location places the observer in the acoustic far field

for the entire range of frequency.

The upwash amplitude is w0 -- 0.05 U for each of 50 equally spaced Mach numbers between 0.01

and 0.2. A separate calculation is run for each Mach number and its corresponding frequency. The

surface pressure in Eqs. (9a) (9d) and (9h) is used as input to Eq. (6) to predict the far field sound

pr(_, t). Each calculation is performed for one acoustic period T of the corresponding frequency,

with 64 time-steps. The average intensity I(_) of the acoustic signal at the observer _, assuming
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spherical spreading, is then calculated by

1 _o T [p'(_7, t)]2 dtI(1) -- p0c0

The average acoustic intensities for a compact source, as a function of Mach number, are repre-

sented as squares in Fig. 6. The slope of these results on a log-log plot can be visually determined

by observing their proximity to the dashed line with the slope of six. This U 6 proportionality is

consistent with Curle's result [6], as expected from the conditions placed on the calculations.

The demonstration of a velocity scaling law is next desired for a noncompact source where

p > 0.4. Therefore, the restriction that f _ U/C must be lifted so that f is independent of U.

The simplest such condition is that f is constant, in which case the Strouhal number remains a

function of U. A series of calculations is again performed, as above, with the only parameter change

being that the frequency is held constant at 1 kHz throughout the range of Mach number. The

input surface pressure for this case is given by Eqs. (ga) and (9e) (9h). The computed acoustic

intensities at 100 m are represented by circles in Fig. 6. In this case, the acoustic intensity scales

approximately as U 5, a result that is consistent with Ffowcs Williams and Hall [7].

3.4 Directivity

As a final exercise in this section, the directivity of a single-frequency source is examined. The

radiated noise pr(2, t) is calculated at many locations on a circular arc in the plane x2 = 0 that is

geometrically centered on the plate's upper surface, as shown in Fig. 7. The arc trajectory (r, ¢)

is determined by r = 3 m and 0 _< ¢ _< _. The directivity is determined by the peak pressure

amplitude Iprlma× that is calculated at each position on the circular arc during one period in time

for a given frequency. The flat plate's dimensions and surface discretization are the same as in

the previous example, and there are 128 time-steps in a period. The observer path, 0 _< _ _< 7r,

is discretized into 128 equally spaced locations. The freestream Mach number is 0.2 and the gust

amplitude is w0 = 0.05 U. Fig. 8 shows the results, in polar form, for frequencies of 1 kHz and 2

kHz. The higher frequency results are scaled to show both loci on the same plot. As expected, the
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2-kHzsolutionhastwiceasmanylobesasthe1-kHzsolution.Furthermore,thegeneraldownstream

directivityof thelobesisconsistentwith theresultsof previousauthorse.g.,[17,18].Finally,note

thefrequencydependentpositionsof the lobeswith respectto a fixedobserver.Forexample,an

observerat _b= 90° will receivea signalthat is nearthe peakamplitudefor the centrallobeof

the l-kHz signal,whereasthe2-kHzsignalis neara localminimumfor thesameobserver.This

frequencydependentcharacteristicof directivityis discussedfurther in thenextsection.

4. Broadband Prediction with Comparison to Experiment

The analytic surface pressure in the previous section is extended to model a broadband source

on a slender airfoil at zero angle of attack. This broadband surface pressure is used as input

to Formulation 1B to predict far field radiation, and the results are compared with experimental

measurements. Amiet [19] has previously proposed a broadband solution to this problem in the

time domain by using the transfer functions in Eqs. (9e) (gg). His resulting solution was a Fourier

transform of the frequency domain solution in [8] and [13]. In the current work, the high frequency

formulation in Section 3 is explicitly extended to a broadband source application with user-specified

spectral content.

4.1 Experiment Description

The experiment that is modeled in this section is reported by Paterson and Amiet [8]. A NACA

0012 airfoil is placed between two vertical plates at zero angle of attack in the test section of an

open jet wind tunnel. A schematic of this experimental setup is shown in Fig. 9. The airfoil has a

chord length of 0.23 m and a span of 0.53 m. Turbulence is generated by a grid upstream of the

airfoil. Noise propagates from the test section into an anechoic chamber that is instrumented with

six microphones. The microphones are located on the tunnel centerline, on an arc of radius 2.25 m,

relative to the airfoil's geometric center. The microphone location of interest here is at 90 degrees

(Fig. 9). Far field noise measurements of the incident turbulence on the airfoil are determined by

subtracting microphone measurements, with and without the model in the test section, at each of

five tunnel speeds: 40, 60, 90, 120, and 165 m/s.
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4.2 Broadband Analysis

For prediction purposes, the airfoil is modeled as a fiat plate in a periodic gust which gives

rise to an unsteady surface pressure that is a broadband extension of the analytic formulation in

Section 3. The airfoil geometry is oriented with respect to the coordinate axes as in Fig. 3, with

{0 <Xl < C} x {-b< x2 < b}, where C= 0.23 mand 2b= 0.53 m. The components kl,k2,

and k3 of the wave number vector are oriented along the axes Xl,X2, and x3, respectively. As

encountered by the airfoil surface in the plane x3 = 0, the normal component of the turbulent

velocity field can be written

////w(xl ,x2,t ) = @ (kl ,k2 ) e -i [ kl (xl-gt)+k2X2 ]dkl dk2 (12)
oo (x_

where @(kl, k2) is the wave number spectrum of the gust amplitude, defined as the inverse Fourier

transform of w(xl, x2, t). Furthermore, this two-component velocity spectrum is interpreted as a

fully three-dimensional spectrum whose form results from the integration of all wave numbers that

are normal to the airfoil surface:

//_t_ (]_1,]_2) = _t_ (]_1, ]_2 ,]_3 ) d]_3

(x)

The complex-valued, unsteady surface pressure jump that arises at a point (Yl, Y2, 0) on the airfoil

surface from the incidence of a turbulent velocity field of the form in Eq. (12) is given by

AP(yl, Y2, t) = 2p0 w(]_l,k2)g(Yl,kl,k2)e i(kIvt-k2y2 )dkldk2 (13)
(x) co

A straightforward approach for predicting the desired broadband far field measurements is to

use the real part of Eq. (13) as input to Formulation lB. The velocity spectrum required in this

approach can be derived from well known power spectrum formulas for homogeneous, isotropic

turbulence, such as von Karman's formula [20]. A formulation for the dual wave number transfer

function g(Yl,kl,k2) is given by Adamczyk [21].

However, because one of the objectives of the current work is to reproduce the results of Paterson
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andAmiet [8]froma timedomainperspective,anapproachsimilarto that takenin [13]will be

takento modelthesurfacepressure.Amiet [13]arguesthat,withincertainlimitations,integration

overall spanwisewavenumbersis not required.His conclusion,derivedmathematicallyin the

frequencydomain,is that onlyonespanwisewavenumbercontributesto thesounddetectedby an

observerin agivenlocation.In particular,Amietfocusesonanobserverin a spanwisesymmetric

location,for whichonly the zerospanwisewavenumberneedsto be considered.This resultis

arguedto beexactin the limit of infinitespananda goodapproximationfor anairfoil of finite

spanthat encountersa highfrequencydisturbance.

Thederivationof Amiet'sanalyticalresult canbegenerallydescribedasfollows. First, Eq.

(13)is transformedinto Fourierspace,with the stationaryvariablexl - Ut being replaced by

w = klU. Then, a two-point cross-correlation function is formed and related to the far field power

spectrum through Kirchhoff's formula [22] and Curle's result [6]. In order to follow a similar line

of reasoning in the time domain, Eq. (13) itself must be related to the far field acoustic pressure

through Formulation lB. In the case of a distant observer directly overhead of a finite-span airfoil,

the terms r, Mr, and 0 in Eq. (6) are weak functions of Yl and Y2, and therefore will be considered

constants. Furthermore, for the observer position considered here, the differences in retarded time,

as a function of airfoil surface location, can be neglected. These assumptions are consistent with the

acoustic model employed by Amiet [13]. For the present problem, including the above assumptions,

Eq. (6) is approximated by

/0c/,[0 0, ]47rp'(:Y, t) _ co r_-J_fr) b _P(Yl, Y2, t -- r/co) + U., P.Yl,0yl Y2, t - r/co) dy2 dyl

M cos t_ f_

] p(o, t -  /co) (14)+ b

where the over-bars on 0, _, and h:/r denote mean values over the airfoil surface, and therefore

the retarded time t - _/co is constant for fixed t. The near field term (second integral in Eq. (6))

has been deleted because of its 1/r 2 proportionality. However, the third integral must be retained

because the Mach number is not necessarily assumed to be small. Only the leading edge line integral
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survives the contour integration in the third term in Eq. (14) because M_ = 0 along the airfoil tips

and the Kutta condition is assumed along the trailing edge.

Before the surface pressure p is specified, Eq. (14) is further simplified. For convenience, the

terms 0 and 2f/r will be neglected, as they are small (2fZr _ 0 and cos 0 _ 1) for a distant observer

directly above the airfoil. With these additional simplifications, if -AP in Eq. (13) is substituted

for P(Yl, Y2, t - S/co) in Eq. (14), the far field acoustic pressure can be approximated in the form

4_rp'(_, t) _ - .T'I(Yl, kl, k2) e i(k_vt-k2y2) dk2 dkl dy2 dyl (15a)
CO _" b c_ c_

+ - S2(O, kl, k2) ei(_vt-k2y2) dk2 dkl dy2

where

: --W(_l,_2)[_]_lgg(yl,]_l,]_2)-_-g_g(yl,]_l,]_2)]oy 1 e-iklf/c°

= k2)g(o, k2)

(15b)

Sufficient conditions [23] on AP and its derivatives have been assumed for the commutation of

integration and differentiation in Eqs. (15a) and (15b). The Y2 integration in Eq. (15a) can now be

explicitly evaluated, yielding

4_-p'(_, t) _ 2pOUco_ foG/_oc/__coc 2 sin(k2b)k2 Sl(yl'kl'k2) eiklUtdk2dkldyl (16)

2poVM F S 2sin(k2b)ow2(O, kl,k2) eiklUt dk2dkl+ -
r oo oc k2

Integrating with respect to k2, the term sin(k2b)/k2 acts like a Dirac delta function when integrating

over an unbounded domain, and the result is

2p°U foC/__c47rp'(:_, t) _ - 27r JCl(Yl, ]_1,0) e iklUt d]¢1 dyl (17)
C0 r <x_

2poUM /_2+ - 27c_'2(O, kl,0) ei_gtdkl
r oo
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Eq. (17)indicatesthat onlythezerospanwisewavenumbercontributesto thenoisedetectedby

thefar fieldobserver.Eqs.(16)and(17)aretimedomainanalogiesto Eqs.(15)and(17)in [13].

Furthermore,Eq. (17)suggeststhat, asinput to Eq. (6),thesurfacepressurejumpin Eq. (13)can

besimplifiedto

Ag(yl, t) = 271-p0 _(kl, 0)g(yl, kl, 0)c i klUtdkl (18)

oo

Note that the Y2 integration will be explicitly performed when Eq. (18) is input to Eq. (6). Only the

k2 integration is neglected. Furthermore, the evaluation of the surface pressure terms at retarded

time t - r/co will be executed in an exact fashion, as prescribed by Eq. (6). Note also that, as a

function of observer time t, the surface pressure in Eq. (18) is constant in -b _< Y2 _< b. Although

the present analysis involves an airfoil of finite span for which end effects are expected, Amiet [12]

argues that these end effects are negligible except at very low frequencies. Therefore, the surface

pressure in Eq. (18) will be applied to the entire airfoil surface, including the regions near the tips.

The evaluation of the surface pressure in Eq. (18) is accomplished by first recognizing the

turbulent fluctuations as a stochastic process. This process can be approximated by a truncated

series whose coefficients are chosen such that the autocorrelation of the series forms a Fourier

transform pair with its power spectrum (see, e.g., [24]). This property is achieved by evaluating

the spectral amplitudes @(kl, k2) as a function of the power spectral density (PSD) of w(xl, x2, t).

To this end, the infinite wave number domain, -oc < kl < (xD, in Eq. (18) is integrally discretized

and truncated such that kl,-N < kl,n < kl,N. The largest wave number kl,N represents an "upper

cutoff" wave number, beyond which the spectral density amplitude is considered negligible or is

out of range of experimental measurement. The unsteady surface pressure jump in Eq. (18) is then

approximated by
N

AP(yl,t) .._ 2_poU E An,°ei¢_ g(Yl'k4 n'O) eih'_Ut (19a)
n----N

kl,n = n Akl, n = O, 4-1, 4-2,..., iN

Akl = kl,N /N
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The phase angles {q)_} are independent random variables uniformly distributed on [0, 2_r ]. The

gust amplitudes {An,0} are related to the PSD of the turbulence and will be discussed momentarily.

The transfer function g(Yl, kl,_, 0) is the limiting case of Adamczyk's [21] dual wave number transfer

function and is given by

g(Yl, kl,n, O) = ( gl + g2 )e -i [2#n(1-M)yl/C+Tr/4-kl,n] (19b)

where gl and g2, now functions of kl,n, are otherwise identical to Eq. (9f),

gl(Yl,_l,n) =

g2(Yl,kl,n) =

[27r_1,nYl(1 + M)/C]½

--] -_- i-[-_)E*[4#n(1 -yl/C)]

[ 27r_1,n (1-I-M) ] ½

(19c)

and E* is the same complex combination of Presnel integrals as in Eq. (9g). The low frequency

transfer function is not used in these broadband predictions because the experimental facility is

anechoic for frequencies above 200 Hz, and the parameter # is greater than 0.4 at this frequency

or above for all five tunnel speeds.

The gust amplitudes {AN,0} are evaluated by

1

An,o = [ Sww(kl,n,O) A]_I ]2 (19d)

where Sww(kl, k2) is interpreted as a three-dimensional PSD of w, into which all normal wave

numbers are integrated,

f?Sww(k ,k2)= Sww(k ,k2,k3)dk3

Although Ak2 does not appear in Eq. (19d), the expression in Eq. (19a) still represents a dimen-

sionally consistent surface pressure with respect to its role as input to the acoustic formulation in

Eq. (6). This fact arises from the previous acoustic analysis in which k2 was explicitly integrated in

order to obtain the expression for the input surface pressure jump in Eq. (18). Moreover, the acous-

tic analysis in Eqs. (14) (17) alleviates the need for the scale factor that was previously reported
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in [25]. It is importantto notethat the broadbandpredictionsto be discussedin the following

subsectionaregeneratedwithoutanyrelianceona scalefactoror otherarbitraryconstant.

Asthisgridgeneratedturbulenceis assumedto behomogeneousandisotropic,thePSDcanbe

relatedto vonKarman'sformula[20].Theformulafor Sww(kl, k2) used in the present calculations

is derived from von Karman's energy spectrum in [13].

-- ^ ^

4 +
-- A ^ (19e)

Sww(kl,k2) 9_ k_ [ l + k_ + k_]_

where u 2 is the streamwise mean-square turbulence, and

ki

and £;1 is the streamwise integral length scale

grffF( ) (19f)
£;1

£;1 = Rww(Xl ) dxl

where Rww is the upwash correlation function defined by

Rww(r) = (w(xl,t) W(Xl+r,t)}- lim 1 _0 T' T--+oo T "W(Xl, t) "//_(Xl q- _, t) dt (19g)

Note that the definition in Eq. (19g) implies that the stochastic process is assumed ergodic.

The two-component formula in Eq. (19e) was derived in [13] by integrating the von Karman

energy spectrum over all h3 components. The k2 component is then set to zero for the present

calculations. Values for u 2 and £1 are determined by experimental measurement. Fink [26] reports

that the turbulence intensity that results from the grid used in this experiment can be approximated

by the empirical formula

(uZ)½_0.04 [ U ]-°'2U _ (19h)

where the reference speed is Uref = 60 m/s. Fink also reports a measured value for the integral

length scale to be £;1 = 3.2 cm.

All of the above expressions and measurements are incorporated into Eq. (19a). The final

24 OF 51



representationfor theunsteadybroadbandpressureontheairfoilsurfaceis thengivenby thereal

partof -AP in Eq.(19a).Thisbroadbandsurfacepressureisusedasinputto Formulation1Bto

predictthe acousticpressurep'(i, t) at the microphone location.

Using symmetry arguments and algebraic manipulation, the Judicial bounds for the surface pres-

sure's spectral representation are altered so that the domain includes only positive wave numbers.

As input to Eq. (6), the resulting real-valued surface pressure can be written

N

p(yl, T) = -47rpoU E A_,o[ B_ cos(kl,_UT + _n - O_) + Dn sin(kl,nUT + _n - a_) ] (20a)

n-1

where the upwash amplitudes An,o are evaluated by Eq. (19d) (19h), and the quantities Bn, Dn,

and an are given by

Bn = gl(Yl, kl,n) +
C(_n) -[-S(_n) -- 1

[27r_1,n(] _- M)]½

s(¢n) - C(¢n)
= 1 (20b)

Dn [27rkl,n(1+ M)

O_ n z

7r

M) Yl _ _l,n + --2 n(1 - 4

where gl(Yl, ]_l,n) is evaluated in Eq. (19c), and C(_n) and S(_n) are the Fresnel cosine and sine

integrals in Eq. (9g) with _n = 4#n(1 -yl/C). The summation in Eq. (20a) begins at n = 1

because Sww(O,O) --0, by Eq. (19e).

4.3 Time Domain Predictions

The lower frequency bound, and therefore the fundamental frequency, for all five calculations

is chosen to be 10 Hz. The upper frequency for the predictions is chosen according to the upper

frequency for which measurements are available for each tunnel speed. For U = 40, 60, and 90 m/s,

the upper bound is fN = 2.5 kHz. The upper bounds for U = 120 and 165 m/s are fN = 3.5 kHz

and 4.5 kHz, respectively. For all five calculations, the numerical bandwidth is Af = 10 Hz. Each

calculation is performed for one period of the lowest frequency, T = 0.1 s. The numerical solution

is sampled at the Nyquist frequency, i.e., At = T/2N, where N is the upper cut-off index in Eq.
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(20a).Thecalculationis performedon a 100× 230surfacegrid with the streamwiseintegration

intervalrestrictedasin Eq. (11),andwith sufficientgrid clusteringnearthe leadingandtrailing

edgesto allowfor c = 0.003.As in the constantfrequencycase,becausethe surfacepressureis

castin only the onespatialvariableYl, and the observerlocationis symmetricrelativeto the

airfoilspan,theacousticpredictionswerefoundto berelativelyinsensitiveto thediscretizationin

Y2.Again,thecurrentdiscretizationis employedasanexamplefor a moregeneralcase,suchas

whenthespanwisedifferencesin retardedtimebecomeimportantfor anobserverwhoselocation

isasymmetricrelativeto the airfoilgeometry.

Theexperimentalmicrophonepositionfor whichcomparisonsaremadeisat a distanceof 2.25

m fromthe model,andat anangleof 90degreesrelativeto the geometriccenterof the model.

Thecoordinatesystemfor the calculationis suchthat thex2-axiscoincideswith thecenterspan

line,sothat themicrophonepositionis in the planex2= 0, asin Fig. 7. Themeasuredobserver

positionfor thepredictionis, then,_ = [0.115,0, 2.25]T in meters.

The position of the microphone relative to the airfoil is corrected for refraction caused by the

presence of a shear layer that forms downstream of the upper lip of the square nozzle exit and is

positioned between the model and the microphone (Fig. 9). This correction is based on geometrical

acoustics with an assumption of a zero thickness shear layer, and is reported by Amiet [27]. Shear

layer corrections that are based on such simple formulations are reasonable for the present case

with the microphone directly above the source. The required correction in the microphone position

is significant. At a measured angle of 90 degrees, the corrected angles ranged from approximately

84.5 degrees for U = 40 m/s to 68.2 degrees for U = 165 m/s.

In addition, the amplitude of the radiated noise is also corrected for the presence of the shear

layer; however at a measured angle of 90 degrees the amplitude correction is not significant, espe-

cially for the lower tunnel speeds. The computed sound pressures pr(_, t) were corrected by factors

ranging from approximately 0.997 for U = 40 m/s to 0.942 for U = 165 m/s. The microphone

position is corrected for the shear layer in a preprocessing step. After the far field noise is calculated

at the corrected position, the results are then post-processed for amplitude correction. In this way,
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thecorrectedpredictionscanbecomparedwith theexperimentalresults"asmeasured."

Fig.10showsthefarfieldsignalp'(_,t) that is predicted by Formulation 1B, for one fundamental

period in time, at the experimental microphone location, for a tunnel speed of 165 m/s. Shear

layer corrections for amplitude and directivity are included in this plot. In order to compare with

experimental measurements in [8], the time domain results for all five tunnel speeds are Fourier

p Nanalyzed and the resulting spectral amplitudes { n}n 1, are used to compute the sound pressure

level (SPL) spectrum of the far field radiation. These SPLs are determined by

SPL(fn) = 20 log _ , n = 1,2,...,N (21)

where the reference pressure is Pref = 20#Pa. The SPLs are converted to a 1 Hz bandwidth by

reducing the values in Eq. (21) by 10 log(A f). This narrowband conversion is consistent with the

experimental SPLs which were measured at a bandwidth of 55.7 Hz and reduced by 17.5 dB [8].

The predicted and measured far field SPLs for the five tunnel speeds are shown in Fig. 11. The

experimental measurements in Fig. 11 were obtained by digitizing the measurements plotted in

Figure 4 of Reference 8. The solid symbols represent those measurements for which the difference

between the noise with and without the airfoil model was considered too small, and these mea-

surements are therefore subject to greater uncertainty. The agreement with the measured data is

very good, particularly in the range of 200 Hz to 1500 Hz, where the spectra are peaked. The rela-

tively significant error in the prediction at the lowest tunnel speed is consistent with the low speed

prediction in [8]. This error results from the fact that, as the air speed decreases, the gust wave

lengths for the lower frequencies that dominate the noise will decrease and eventually become of

the order of the airfoil thickness, thereby making the fiat plate approximation increasingly invalid.

The existence of multiple local extrema in a spectrum is often interpreted as the existence of

multiple noise producing mechanisms; however, in the present case, the multiple extrema result

from the changing placement of lobes, as a function of frequency, relative to a fixed observer. This

phenomenon was described in Section 3.4 (Fig. 8). A similar trend in local extrema is also apparent

in the experimental measurements at the two highest tunnel speeds, where the signal-to-noise ratio

27 OF 51



wasmuchhigher.

In Fig. 12,acomparisonismadebetweenthecurrenttimedomainpredictionandthefrequency

domainpredictionof PatersonandAmiet [8],for thetunnelspeedU -- 165 m/s. The highest speed

is chosen for the large frequency domain for which the spectrum is predicted. The frequency domain

prediction in Fig. 12 was obtained by digitizing 51 points on the appropriate locus in Figure 4 of

Reference 8. As the length of the square symbols is equivalent to 0.5 dB on the ordinate axis, clearly,

the two predictions are very close throughout the entire frequency range, and nearly identical in

the peak range of 200 Hz to 1500 Hz. That the current time domain predictions are so similar

to the predictions in [8] is not surprising, as the current predictions rely upon the same unsteady

surface pressure formulation as those in [8]. However, the decoupling of the aerodynamics and the

acoustics that is apparent in Eq. (6) makes Formulation 1B amenable to any type of input available,

whether analytical, experimental, or computational.

5. Statistical Formulation

Often, when aeroacoustic experiments are performed, surface pressure correlations are extremely

useful in characterizing noise due to an airflow over a model. Under certain conditions, Formulation

1B is readily transformed into an expression that aids in the statistical analysis of broadband noise.

Such an expression for the autocorrelation of the far field acoustic pressure is developed in this

section.

A far field autocorrelation formulation is derived for the case of a thin airfoil moving rectilinearly

at constant velocity. The assumption of uniform velocity simplifies the algebra considerably, and

the extension to general motion is straightforward. The following derivation follows the statistical

analysis for jet noise presented by Morris and Farassat [28]. In the case of an observer in the

acoustic far field, r >> A, the near field term (the second integral in Eq. (6)) can be ignored because

of its 1/r 2 proportionality. Also, for notational convenience, the spatial and temporal derivatives of

pressure in the first integral are written as a single time derivative of pressure, ih, when evaluated in

a reference frame that is fixed relative to the medium at rest, as in Eq. (5b). In this fixed reference
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frame,thefar fieldacousticpressurecanbewritten

4_p,(£t) = _=>o [C° /5cos_if _ _/_r)] red_- _ 0 [-M/2 p- cOS 01Lr(a - Mr)/toted (22)

Eq. (22) is now transformed to the reference frame fixed to the airfoil, i.e. the wind tunnel reference

frame. In this frame of reference, the emmision distance rret has the following form:

1

fret -- _[M(xl - Yl) -4-/_] (23a)

where

= [((xl - yl) 2 _-/_2(x2 - y2) 2 _- f12x211/2 (23b)

Furthermore,

[r (1 - Mr)]_et =/_ (23c)

and

[cosO]ro - x3 _ 92x3 (23d)
fret M(Xl - Yl) -F

Therefore, in the wind tunnel reference frame, a time independent function/C(£, _) is defined by

'°s0 1 = f12x3 - ]C(£, _) (24)r (1 - Mr) ret k[M(x_yl) + R]

Eq. (24) is an important result because it shows that, in the laboratory reference frame, the

only time dependent quantities in Eq. (22) are p and 15. Thus, Eq. (22) can be written in a form

that shows the dependence of p_(£, t) on £, _, and t explicitly:

47rP'(Z't) = 1_=c0 >o ]C(£,g)15(g,t-r_et/co)dg_'-_: o M,(g)]C(e,g)p(g,t-rret/co)dg (25)

where dg8 denotes an integral surface element dyldy2. Using the notation (.,.) to represent an

ensemble average, as in Eq. (19g), assuming ergodicity, the autocorrelation of the acoustic pressure
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isevaluatedasfollows:

167r2(p'(£ t),p'(_,t + _) ) =

+

zczc'<b(_7,t - F_e_/_0),b(_7',t + _ -- F'_et/_0)>d_7_.d_7_.

M" JCU ([9(_,t- rret/Co),p(_',t + _- rrret/Co) ) d_sdg ' (26)

M. _ _' (p(_,t - F_o_/_o),b(_7',t+ _ - F'_et/_o)>4_" d_

My mtu )_ ]i_ r (p(ff_ t - Fret/Co),p(fft t + _- -- Vtret/Co) ) d_d_ t

All primed quantities on the right-hand side of Eq. (26) indicate replacement of the variable _7

with _', e.g., K? = 1C(2, _').

Now, let _7and _7' be related by _' = _7+ if, where ff = [_1, _2, 0] T is a vector in the plane of

the airfoil. Furthermore, it is assumed that 1_71<< Fret, in which case r'ret can be approximated by

rlret _ Fret -4- _" Vyrret (27a)

where

1[ o]VyFret -- /_2 M + _- ,
(27b)

Two autocorrelation functions, Fpb and Fpp, and a cross-correlation function Fpb are therefore

defined by

Fv_(ff;ff,_) = (p(y,_-),/i(y+ff,_-+_))

(2S)

Using Eqs. (27) and (28), the ensemble-averaged quantities on the right-hand side of Eq. (26) have

the following meaning:
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<p(_y,t - _o,/co),#(_', t + _ - _o_/_o- _. % _o_/_o)>

<p(Et - rro,/c0),p(ff',t + _ - r'rot/c0- ,7"% _o,/c0)>

= F_(2; _,_--_'V_et/C0)

= Fpp(2;_,_--_'V_e_/C0)

= Fp_(2;_,_--_'V_e_/C0)

= F_(_; --if,--_ +_. V_rre_/C0)

(29)

Eq. (26) can thus be rewritten using the above correlation functions explicitly:

16_ 2 (p'(_,t),p'(Y,t+_)) =

lc_) f]:>0 d_Ys E(_,ff) fA_ 1C(£ff + g) Fp_(_7; g,_- g" Vurret/co)dg (30)

1 _= dffs 1C(_,ff) fL Mu(ff+g) lC(x'Y+g)FPi_(Y;-_'-¢+g'Vyrret/c°)dg
CO >0 c

CO 0 c

Here, Ac and Lc are correlation area and correlation length, respectively. Clearly, performing the

integration in the four inner integrals on the right-hand side of Eq. (30) will result in four functions

of Y, g, and _. Calling these function F1 to F4 in order of their appearance, Eq. (30) can be

rewritten

16 7r2 (p'(_, t),p'(_, t + _) >

1

co

f_: _:(z,y) [FI(Z,y,_) -c0_(Z,_,_)]dCs
>0

---- _= 0 M.(ff) lC(_,_) [ F3(_,ff, f) - coF4(_,ff, _) ] dg

(31)

The usefulness of the analysis presented above depends on the knowledge of two autocorrelation

functions and one cross-correlation function, all of which are expected to be obtained from experi-
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mentalmeasurement.If thesurfacepressurefluctuationsareassumedto bestationaryin time,then

onlythecorrelationfunctionFpp(ff; _, _) needs to be measured, as the other two correlation func-

tions can be derived from it [29]. It is expected that, of the three correlation functions, F_(_; _, _)

will dominate the acoustic pressure, and therefore, F1 (if; _, _) will be the only significant contrib-

utor to the right-hand side of Eq. (31). Eq. (30) indicates that, at a location _ on the airfoil, only

the turbulent pressure fluctuations over a correlation area near that point will contribute to the

sound at the observer location 2. Furthermore, the time dependence of the correlation functions is

displaced by _. Vyrret/co because of the retarded time effect. This displacement is dependent upon

airfoil Mach number and the radiation direction 2- _ (the visual direction). Perhaps as important

as its direct application to the prediction of far field noise from surface pressure measurements, Eq.

(31) can be used for qualitative analysis of broadband and trailing edge noise, which is the subject

of ongoing research.
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Concluding Remarks

The prediction of broadband noise from rotating machinery and airframes is currently the

subject of intense research in aeroacoustics. The physics of broadband noise generation are well

understood as the result of the pioneering research of Howe [14, 30, 31], Amiet and eoworkers [3,

4, 8, 13, 19, 32], and Brooks and coworkers [33, 34]. The previous work of these aeroacoustieians,

and many others, has clearly demonstrated that any successful broadband loading noise prediction

requires an understanding of two physical processes: the character of the time-dependent surface

pressure that provides the acoustic source, and the manner in which that source gives rise to an

acoustic signal.

The most prevalent types of unsteady surface pressure associated with broadband loading noise

are those that arise from the interaction of the airfoil with a gust or the passage of eddies near

the trailing edge. Obtaining this fluctuating pressure distribution analytically, numerically, or

experimentally is itselfa difficult problem. For this reason, past researchers have most often resorted

to modeling the surface pressure, using guidance from experiments to aid in the development of

these models. Today, high resolution surface pressure fluctuations can be obtained from turbulence

simulations in realistic situations where the airfoil geometry and kinematics are accurately modeled.

Therefore, the improvement of the acoustic radiation model becomes an important research topic.

In the past, acoustic radiation models were most often developed for airfoils in uniform rectilinear

motion. In addition, other restrictive assumptions, such as far field positioning of the observer,

were often used to simplify the acoustic analysis.

The present work develops a simple and general acoustic result in the time domain, based on the

solution of the loading noise term of the Ffowcs Williams-Hawkings equation. This new solution,

called Formulation 1B, is, to date, the simplest analytical result for the prediction of loading noise

and is suitable for statistical analysis of broadband noise for a surface in general motion. The

new formulation has been validated with time domain calculations that predict the noise due to

incident turbulence on a NACA 0012 airfoil. The time domain predictions are found to be in

excellent agreement with the frequency domain predictions of Paterson and Amiet [8] as well as
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with their experimentalmeasurementsovera significantrangeof tunnelspeed.Theseresultsare,

to theauthors'knowledge,thefirst successfulbroadbandpredictionsin thetimedomain.

Becauseofits relativesimplicity,Formulation1Blendsitselfto astraightforwardextensionthat

providesanautocorrelationof theacousticpressurein termsof twoautocorrelationfunctionsand

onecross-correlationfunctionof the surfacepressure.Both numericalandexperimentalsurface

pressuredistributionscanbeusedin thisresultto yield informationonbroadbandnoisestatistics.

Theauthorsadvocatetheuseof time domainmethodsin the predictionof broadbandnoise.

Becauseof the decouplingof the aerodynamicsfrom the acoustics,the chiefadvantageof time

domainmethodsis their potentialfor directuseoftime-dependentsurfacepressurestatisticsfrom

experimentsor computersimulationsin thepredictionof broadbandnoise.
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Figure 1 Schematic for the derivation of Formulation lB.
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Figure 2 Differential surface element in Eq. (4c).
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Figure 3 Schematicfor theconstant-frequencyloadingnoiseproblemin Section3; an infinitely
thin rectangluarsurfacein rectilinearmotion.

42OF51



........
c_ b >

_Z .......................

i_i!iIiiiii .................................................

_y

x

Figure 4 Second level grid (20 x 80) for convergence study in Section 3.2.
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Figure 9 Schematic for incident turbulence experiment in [8].
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Figure 10 Predicted far field signal, U = 165 m/s; microphone at 90 °, 2.25 m above airfoil center.
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Figure 11 Predicted and measured far field noise spectra; microphone at 90 °, 2.25 m above airfoil

center; experimental data reproduced from [8]; solid symbols denote low signal-to-noise ratio.

50 OF 51



80

75

d
[1_
o0

65

60

U -- 165 m/s

[] Frequency Domain - from [8]
Time Domain - based on Eq. (6)

550 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11000 2000 3000 4000 5000

Frequency, Hz

Figure 12 Comparison of predicted far field noise spectra, U = 165 m/s.

51 OF 51


